Horner's rule

1. Evaluate the polynomial $x^{3}+2 x^{2}+4 x+1$ at the point 1.1 using Horner's rule.

Answer:

$$
1.1+2=3.1
$$

$$
\begin{aligned}
& 3.1 \times 1.1+4=3.41+4=7.41 \\
& 7.41 \times 1.1+1=8.151+1=9.151
\end{aligned}
$$

2. Evaluate the polynomial $x^{4}+5 x+2$ at the point 1.1 using Horner's rule.

Answer: $\begin{array}{rlrl} & 1.1^{3}+5 & =1.331+5=6.331 \\ & 6.331 \times 1.1+2=6.9641+2=8.9641\end{array}$

$$
6.331 \times 1.1+2=6.9641+2=8.9641
$$

3. Suppose that an array is pass as an argument for Horner's rule. Which entry is associated with each coefficient for each of the following functions?
```
double horner( double *coeffs, unsigned int n, double x ) {
    double result{ coeffs[0] };
    for ( unsigned int k{1}; k <= n; ++k ) {
        result = result*x + coeffs[k];
    }
    return result;
}
double horner( double *coeffs, unsigned int n, double x ) {
        double result{ coeffs[n] };
        for ( unsigned int k{n - 1}; k < n; --k ) {
            result = result*x + coeffs[k];
    }
    return result;
}
double horner( double *coeffs, unsigned int n, double x ) {
    double result{ coeffs[0] };
        for ( unsigned int k{1}; k < n; ++k ) {
            result = result*x + coeffs[k];
    }
    return result;
}
double horner( double *coeffs, unsigned int n, double x ) {
    double result{ coeffs[n - 1] };
    for ( unsigned int k{n - 2}; k < n; --k ) {
            result = result*x + coeffs[k];
    }
    return result;
}
```

Answer: In the first case, array [k] is the coefficient of x^{k} where n is the degree of the polynomial, in the second, array [k] is the coefficient of x^{n-k} where n is the degree of the polynomial, in the third, array [k] is the coefficient of x^{k} but the degree of the polynomial is $n-1$, and in the fourth, array [k] is the coefficient of x^{n-k-1}, and again the degree of the polynomial is $n-1$.

